Publications, Patents, Books and Book Chapters
Showing entries 1 - 10 out of 259
2024
Sosnin, S 2024, 'MolCompass: multi-tool for the navigation in chemical space and visual validation of QSAR/QSPR models', Journal of Cheminformatics, vol. 16, no. 1, 98. https://doi.org/10.1186/s13321-024-00888-z
Digles, D, Ingles-Prieto, A, Dvorak, V, Mocking, TAM, Goldmann, U, Garofoli, A, Homan, EJ, Di Silvio, A, Azzollini, L, Sassone, F, Fogazza, M, Bärenz, F, Pommereau, A, Zuschlag, Y, Ooms, JF, Tranberg-Jensen, J, Hansen, JS, Stanka, J, Sijben, HJ, Batoulis, H, Bender, E, Martini, R, IJzerman, AP, Sauer, DB, Heitman, LH, Manolova, V, Reinhardt, J, Ehrmann, A, Leippe, P, Ecker, GF, Huber, KVM, Licher, T, Scarabottolo, L, Wiedmer, T & Superti-Furga, G 2024, 'Advancing drug discovery through assay development: a survey of tool compounds within the human solute carrier superfamily', Frontiers in Pharmacology, vol. 15, 1401599. https://doi.org/10.3389/fphar.2024.1401599
Granulo, N, Sosnin, S, Digles, D & Ecker, GF 2024, 'The macrocycle inhibitor landscape of SLC‐transporter', Molecular Informatics, vol. 43, no. 5, e202300287. https://doi.org/10.1002/minf.202300287
Huang, J, Osthushenrich, T, MacNamara, A, Mälarstig, A, Brocchetti, S, Bradberry, S, Scarabottolo, L, Ferrada, E, Sosnin, S, Digles, D, Superti-Furga, G & Ecker, GF 2024, 'ProteoMutaMetrics: machine learning approaches for solute carrier family 6 mutation pathogenicity prediction', Rsc advances, vol. 14, no. 19, 00748, pp. 13083-13094. https://doi.org/10.1039/d4ra00748d
Ferrada, E, Wiedmer, T, Wang, WA, Frommelt, F, Steurer, B, Klimek, C, Lindinger, S, Osthushenrich, T, Garofoli, A, Brocchetti, S, Bradberry, S, Huang, J, MacNamara, A, Scarabottolo, L, Ecker, GF, Malarstig, A & Superti-Furga, G 2024, 'Experimental and Computational Analysis of Newly Identified Pathogenic Mutations in the Creatine Transporter SLC6A8', Journal of Molecular Biology, vol. 436, no. 2, 168383. https://doi.org/10.1016/j.jmb.2023.168383
Agrawal, A, Balcı, H, Hanspers, K, Coort, SL, Martens, M, Slenter, DN, Ehrhart, F, Digles, D, Waagmeester, A, Wassink, I, Abbassi-Daloii, T, Lopes, EN, Iyer, A, Acosta, JM, Willighagen, LG, Nishida, K, Riutta, A, Basaric, H, Evelo, CT, Willighagen, EL, Kutmon, M & Pico, AR 2024, 'WikiPathways 2024: next generation pathway database', Nucleic Acids Research, vol. 52, no. D1, pp. D679-D689. https://doi.org/10.1093/nar/gkad960
Grandits, M & Ecker, GF 2024, 'Ligand- and Structure-based Approaches for Transmembrane Transporter Modeling', Current drug research reviews, vol. 16, no. 2, pp. 81-93. https://doi.org/10.2174/2589977515666230508123041
2023
Smajić, A, Grandits, M & Ecker, GF 2023, 'Privacy-preserving techniques for decentralized and secure machine learning in drug discovery', Drug Discovery Today, vol. 28, no. 12, 103820, pp. 1-8. https://doi.org/10.1016/j.drudis.2023.103820
Grillberger, K, Cöllen, E, Trivisani, CI, Blum, J, Leist, M & Ecker, G 2023, 'Structural Insights into Neonicotinoids and N-Unsubstituted Metabolites on Human nAChRs by Molecular Docking, Dynamics Simulations, and Calcium Imaging', International Journal of Molecular Sciences, vol. 24, no. 17, 13170. https://doi.org/10.3390/ijms241713170
Smajić, A, Rami, I, Sosnin, S & Ecker, GF 2023, 'Identifying Differences in the Performance of Machine Learning Models for Off-Targets Trained on Publicly Available and Proprietary Data Sets', Chemical Research in Toxicology, vol. 36, no. 8, pp. 1300-1312. https://doi.org/10.1021/acs.chemrestox.3c00042