Vienna LiverTox Workspace-A Set of Machine Learning Models for Prediction of Interactions Profiles of Small Molecules With Transporters Relevant for Regulatory Agencies

Author(s)
Floriane Montanari, Bernhard Knasmüller, Stefan Kohlbacher, Christoph Hillisch, Christine Baierová, Melanie Grandits, Gerhard F Ecker
Abstract

Transporters expressed in the liver play a major role in drug pharmacokinetics and are a key component of the physiological bile flow. Inhibition of these transporters may lead to drug-drug interactions or even drug-induced liver injury. Therefore, predicting the interaction profile of small molecules with transporters expressed in the liver may help medicinal chemists and toxicologists to prioritize compounds in an early phase of the drug development process. Based on a comprehensive analysis of the data available in the public domain, we developed a set of classification models which allow to predict-for a small molecule-the inhibition of and transport by a set of liver transporters considered to be relevant by FDA, EMA, and the Japanese regulatory agency. The models were validated by cross-validation and external test sets and comprise cross validated balanced accuracies in the range of 0.64-0.88. Finally, models were implemented as an easy to use web-service which is freely available at livertox.univie.ac.at.

Organisation(s)
Research Group Workflow Systems and Technology
Journal
Frontiers in Chemistry
Volume
7
ISSN
2296-2646
DOI
https://doi.org/10.3389/fchem.2019.00899
Publication date
01-2020
Peer reviewed
Yes
Austrian Fields of Science 2012
301207 Pharmaceutical chemistry
Portal url
https://ucris.univie.ac.at/portal/en/publications/vienna-livertox-workspacea-set-of-machine-learning-models-for-prediction-of-interactions-profiles-of-small-molecules-with-transporters-relevant-for-regulatory-agencies(fb6f0da1-a9ab-4883-a818-601238800c27).html