Article published in Frontiers in Chemistry - Medicinal and Pharmaceutical Chemistry

10.01.2020

Vienna LiverTox Workspace - A Set of Machine Learning Models for Prediction of Interactions Profiles of Small Molecules With Transporters Relevant for Regulatory Agencies by Gerhard Ecker, Floriane Montanari, Bernhard Knasmüller, Stefan Kohlbacher, Christoph Hillisch, Christine Baierová, Melanie Grandits

Abstract

Transporters expressed in the liver play a major role in drug pharmacokinetics and are a key component of the physiological bile flow. Inhibition of these transporters may lead to drug-drug interactions or even drug-induced liver injury. Therefore, predicting the interaction profile of small molecules with transporters expressed in the liver may help medicinal chemists and toxicologists to prioritize compounds in an early phase of the drug development process. Based on a comprehensive analysis of the data available in the public domain, we developed a set of classification models which allow to predict—for a small molecule—the inhibition of and transport by a set of liver transporters considered to be relevant by FDA, EMA, and the Japanese regulatory agency. The models were validated by cross-validation and external test sets and comprise cross validated balanced accuracies in the range of 0.64–0.88. Finally, models were implemented as an easy to use web-service which is freely available at https://livertox.univie.ac.at.


© 2020 Montanari F, Knasmüller B, Kohlbacher S, Hillisch C, Baierová C, Grandits M and Ecker GF (2020) Vienna LiverTox Workspace—A Set of Machine Learning Models for Prediction of Interactions Profiles of Small Molecules With Transporters Relevant for Regulatory Agencies. Front. Chem.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

 More News

Open Access
 

Are you curious what is known about SLCs? And how they are related? We are enthusiastic about our manuscript presenting the data- and...

News
 

Tarik Ćerimagić successfully defended his master thesis: "A Multi-Task Deep Neural Network Approach for Data Imputation of SLC Transporter...

News
 

On July 10th, 2024 our colleague Aljoša successfully defended his PhD thesis: "Machine Learning Approaches for Off-Target and Bioactivity...